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Abstract
Determining	 how	 energy	 flows	 through	 ecosystems	 reveals	 underlying	 ecological	
patterns	that	drive	processes	such	as	growth	and	food	web	dynamics.	Models	that	
assess	the	transfer	of	energy	from	producers	to	consumers	require	information	on	
the	energy	 content	or	energy	density	 (ED)	of	prey	 species.	ED	 is	most	 accurately	
measured	 through	 bomb	 calorimetry,	 but	 this	 method	 suffers	 from	 limitations	 of	
cost,	time,	and	sample	requirements	that	often	make	it	unrealistic	for	many	studies.	
Percent	dry	weight	(DW)	is	typically	used	as	a	proxy	for	ED,	but	this	measure	includes	
an	indigestible	portion	(e.g.,	bones,	shell,	salt)	that	can	vary	widely	among	organisms.	
Further,	several	distinct	models	exist	for	various	taxonomic	groups,	yet	none	can	ac-
curately	estimate	invertebrate,	vertebrate	and	plant	ED	with	a	single	equation.	Here,	
we	present	a	novel	method	to	estimate	the	ED	of	organisms	using	percent	ash‐free	
dry	weight	(AFDW).	Using	data	obtained	from	11	studies	diverse	in	geographic,	tem-
poral	and	taxonomic	scope,	AFDW,	DW	as	well	as	percent	protein	and	percent	lipid	
were	compared	as	predictors	of	ED.	Linear	models	were	produced	on	a	logarithmic	
scale,	 including	dummy	variables	 for	broad	 taxonomic	groups.	AFDW	was	 the	 su-
perior	predictor	of	ED	compared	to	DW,	percent	protein	content	and	percent	lipid	
content.	Model	selection	revealed	that	using	correction	factors	(dummy	variables)	for	
aquatic	animals	(AA)	and	terrestrial	invertebrates	(TI)	produced	the	best‐supported	
model—log10(ED)	=	1.07*log10(AFDW)	−	0.80	(R

2	=	0.978,	p	<	.00001)—with	an	inter-
cept	adjustment	of	0.09	and	0.04	for	AA	and	TI,	respectively.	All	models	including	
AFDW	as	a	predictor	had	high	predictive	power	(R2	>	0.97),	suggesting	that	AFDW	
can	be	used	with	high	degrees	of	certainty	to	predict	the	ED	of	taxonomically	diverse	
organisms.	Our	AFDW	model	will	allow	ED	to	be	determined	with	minimal	cost	and	
time	 requirements	 and	excludes	 ash‐weight	 from	estimates	of	digestible	mass.	 Its	
ease	of	use	will	allow	for	ED	to	be	more	readily	and	accurately	determined	for	diverse	
taxa	across	different	ecosystems.
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1  | INTRODUC TION

Tracing	 energy	 flow	 through	 ecosystems	 has	 been	 used	 since	
Lindeman	(1942)	as	a	tool	to	answer	questions	about	growth,	spe-
cies	 interactions,	 and	 community	dynamics.	An	assessment	of	 en-
ergy	fluxes	in	ecosystems	requires	not	only	the	quantification	of	the	
diet	of	consumers	(Nielsen,	Clare,	Hayden,	Brett,	&	Kratina,	2018),	
but	also	a	determination	of	the	energy	density	(ED)	of	both	the	prey	
and	 consumers	 (Cummins	 &	Wuycheck,	 1971).	 ED	 is	 a	 commonly	
used	currency	in	ecology	to	ask	questions	related	to	growth,	energy	
budgets,	waste	metabolism,	and	foraging	behavior	across	a	diversity	
of	species	(Chen,	Thompson,	&	Dickman,	2004;	Herrera,	Osorio,	&	
Mancina,	2011;	Litzow,	Piatt,	Abookire,	&	Robards,	2004;	Peckham	
et	 al.,	 2011;	 Rodgers	 &	 Sinclair,	 1997).	 It	 is	 a	 key	 parameter	 in	 a	
wide	variety	of	bioenergetics	and	growth	models	(e.g.,	Benoit‐Bird,	
2004;	Deslauriers,	Heironimus,	&	Chipps,	2016;	Maino	&	Kearney,	
2015)	but	can	be	quite	sensitive	to	error	(Bartell,	Breck,	Gardner,	&	
Brenkert,	1986).	This	error	remains	an	important	source	of	variability	
as	 somatic	energy	content	and	composition	can	vary	 substantially	
depending	on	spatial	context	(Dessier	et	al.,	2018;	Ruck,	Steinberg,	
&	Canuel,	2014;	Schultz	&	Conover,	1997),	season	sampled	(Chen	et	
al.,	2004;	Pedersen	&	Hislop,	2001),	or	ontogenetic	stage	(Lawson	et	
al.,	2018;	Woodland,	Hall,	&	Calder,	1968).	Thus,	accurate	measure-
ments	of	ED	are	imperative	to	the	validity	of	predictions	made	from	
these	models.

Bomb	 calorimetry	 is	 the	 most	 direct	 approach	 for	 measuring	
ED,	 though	 it	 is	 also	 time‐consuming,	 costly	 and	 can	have	 sample	
requirements	that	are	challenging	for	estimating	ED	of	smaller	spe-
cies	(typically	at	least	25	mg	of	dry	sample	is	required,	Cummins	&	
Wuycheck,	1971).	When	bomb	calorimetry	is	not	feasible,	ED	values	
are	often	borrowed	from	the	 literature	or	estimated	using	alterna-
tive	methods.	Proximate	 analysis	makes	use	of	 conversion	 factors	
for	major	body	constituents	such	as	lipid	and	protein	and	converts	
them	into	gross	energy	content	(e.g.,	Battam,	Richardson,	Watson,	
&	Buttemer,	2010;	Logerwell	&	Schaufler,	2005).	While	proximate	
analysis	 is	regularly	employed	in	 lieu	of	direct	measurement,	 it	en-
tails	greater	time	and	cost	requirements	than	bomb	calorimetry.	In	
addition,	lipid	and	protein	extractions	involve	intricate	methods	than	
can	introduce	further	error	 into	estimates.	There	are	also	no	stan-
dardized	conversion	factors	for	proximate	constituents,	even	among	
a	single	class	such	as	fishes	(values	can	range	from	17.2–23.9	kJ/g	for	
protein	and	34.7–39.8	kJ/g	for	lipid;	Brett,	1995).	As	a	result,	ED	es-
timates	from	proximate	analysis	can	differ	substantially	from	those	
obtained	from	bomb	calorimetry	(Craig,	1977).

Other	 inference	 methods	 have	 been	 developed	 based	 on	 ob-
served	 relationships	 between	 organic	 components	 and	 ED.	 The	
most	 common	 alternative	 to	 infer	 ED	 for	 bioenergetics	 studies	 is	
through	the	relationship	between	energy	content	and	percent	dry	
weight	 (DW).	 In	 aquatic	 organisms,	 this	 relationship	 exists	 due	 to	
the	negative	association	between	percent	fat	and	protein	with	water	
content	 (Craig,	 1977;	 Flath	&	Diana,	 1985).	A	 predictive	model	 to	
estimate	 ED	 based	 on	 these	 assumptions	was	 first	 developed	 for	
fish	by	Hartman	and	Brandt	(1995).	Several	such	relationships	have	

since	been	developed	in	the	aquatic	realm	for	individual	species	or	
locations	(e.g.,	Ciancio,	Pascual,	&	Beauchamp,	2007;	Trudel,	Tucker,	
Morris,	 Higgs,	 &	Welch,	 2005)	 as	 well	 as	 more	 generally	 for	 fish	
(Hartman	&	Brandt,	1995)	and	terrestrial	and	aquatic	invertebrates	
(James	et	al.,	2012).	The	most	obvious	advantage	of	employing	these	
models	 is	 that	they	greatly	reduce	time	and	cost	requirements,	al-
lowing	 researchers	 to	 obtain	 quick	 and	 easy	 estimates	 of	 ED	 for	
a	 large	 number	 of	 samples	 since	 all	 that	 is	 required	 is	 drying	 and	
weighing	samples.

Models	used	 to	estimate	ED	 from	DW	commonly	assume	 that	
DW	reflects	the	digestible	energy	or	organic	content	of	an	organism	
and	should	thus	be	directly	associated	with	ED.	However,	variability	
in	inorganic	material	such	as	bone	(Cameron,	1985),	salt	(Arai,	1997),	
or	calcium	carbonate	shells	(Lalli	&	Gilmer,	1989)	between	inverte-
brates	and	vertebrates	as	well	as	aquatic	and	terrestrial	organisms	
may	introduce	error	into	models	that	predict	ED,	and	may	preclude	
the	development	of	a	general	 relationship	to	predict	ED	from	DW	
across	both	aquatic	and	terrestrial	organisms.	This	material	typically	
comprises	the	indigestible	ash‐weight	of	organisms.	Ash‐weight	can	
be	measured	following	the	determination	of	DW	by	burning	off	or-
ganic	matter	 in	 a	muffle	 furnace	 at	 high	 temperatures	 for	 several	
hours	 (Cummins	&	Wuycheck,	 1971).	 This	mass	 can	 then	 be	 sub-
tracted	from	the	DW	fraction	to	give	a	measure	of	total	organic	con-
tent	 (Lucas,	1994)	or	percent	ash‐free	dry	weight	 (AFDW).	Hence,	
AFDW	may	provide	a	more	accurate	estimate	of	digestible	energy	
across	a	wide	range	of	taxa.

A	second	assumption	made	by	models	that	estimate	ED	from	
DW	is	that	a	negative	relationship	exists	between	lipid	and	water	
content	 (Flath	 &	 Diana,	 1985).	While	 this	 may	 be	 true	 for	 ani-
mals,	plants,	and	algae	rely	much	more	heavily	on	carbohydrates	
for	 storage	 as	 well	 as	 structure	 in	 their	 cell	 walls.	 As	 carbohy-
drates	have	a	lower	ED	than	high‐energy	constituents	like	lipids,	
one	would	expect	a	lower	estimate	of	ED	in	these	organisms	for	
the	 same	 value	 of	 AFDW.	 A	 novel	 model	 to	 estimate	 ED	 from	
AFDW	would	 remove	 the	error	associated	with	variability	 in	 in-
organic	matter	and	provide	a	more	accurate	estimate	of	ED	while	
remaining	 economical	 with	 respect	 to	 both	 time	 and	 cost.	 This	
model,	however,	would	likely	need	to	incorporate	expected	taxo-
nomic	differences	between	groups	that	vary	greatly	in	proximate	
composition.

In	this	study,	we	investigated	a	novel,	predictive	model	for	es-
timating	wet	weight	ED	using	percent	AFDW	across	a	wide	range	
of	aquatic	and	terrestrial	organisms.	Other	common	predictors,	in-
cluding	percent	dry	weight,	percent	protein	content,	and	percent	
lipid	 content	were	 examined	 to	 compare	 their	 predictive	 power	
in	estimating	ED.	We	expected	AFDW	to	be	a	superior	predictor	
of	ED	relative	 to	DW,	percent	protein	content,	and	percent	 lipid	
content.	Across	 taxonomic	groups,	we	also	expected	 to	observe	
a	lower	value	for	ED	in	plants	than	for	animals	at	the	same	value	
of	DW	or	AFDW	due	 to	 a	 higher	 reliance	on	 low‐energy	 carbo-
hydrates	 by	 algae	 and	 plants	 for	 storage	 and	 cell	 structure.	 A	
model	that	estimates	wet	weight	ED	from	AFDW	would	allow	for	
standardization	 among	 individuals	with	 a	 variable	 component	 of	
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inorganic	matter	that	does	not	contribute	to	digestible	energy	for	
predators.	AFDW	also	suffers	 less	 from	 time	and	cost	 restraints	
and	allows	for	the	accurate	estimation	of	ED	values	for	very	small	
organisms.

2  | MATERIAL S & METHODS

2.1 | Data collection

To	determine	the	predictive	power	of	AFDW	in	estimating	the	ED	
of	both	aquatic	and	terrestrial	organisms,	data	were	obtained	from	
the	literature	that	met	the	following	selection	criteria:	ED	was	di-
rectly	measured	via	bomb	calorimetry,	AFDW	was	measured	and	
at	 least	 one	 other	 predictor	 variable	 was	 measured	 (either	 dry	
weight,	percent	protein	content,	or	percent	 lipid	content).	Using	
the	Web	of	Science	database,	the	search	terms	“energy	content”,	
“somatic	 energy”,	 “energy	 density”,	 “energetic	 value”,	 “caloric	
content”,	 “ash‐weight”,	 “dry	 weight”,	 and	 “ash‐free	 dry	 weight”	
were	 used	 to	 select	 studies	 that	met	 our	 criteria.	Originally,	 all	
taxonomic	groups	were	to	be	included.	However,	only	two	papers	
were	 found	 that	 included	 data	 for	 AFDW	 and	 ED	 in	 terrestrial	
vertebrates	(20	observations;	Holmes,	1976;	Myrcha	&	Pinowski,	
1970)	and	these	records	represented	very	low	taxonomic	cover-
age	 (only	 passerine	 birds).	 As	 such,	we	 excluded	 terrestrial	 ver-
tebrates	 from	 our	 model	 development.	 Generally,	 papers	 that	
contained	AFDW	data	also	contained	DW	information,	however,	
very	 few	 also	 listed	 percent	 protein	 and	 percent	 lipid	 content.	
Thus,	 data	were	 subset	 into	 two	 groups	 that	 contained	 (a)	 only	
DW	and	AFDW	measurements	and	(b)	DW	and	AFDW	measure-
ments	as	well	as	percent	protein	and	lipid	content.	The	two	data-
sets	were	analyzed	separately.

2.2 | Linear models

A	series	of	linear	models	were	developed	for	each	of	the	two	data-
sets.	 ED	 values	 (kJ/g	wet	weight)	were	 plotted	 against	 predictor	
variables	(DW,	AFDW,	percent	protein,	and	percent	lipid)	for	each	
subset.	All	the	data	were	log10	transformed	prior	to	performing	the	
analyses.	Dummy	variables	(a	value	of	0	or	1)	were	assigned	to	each	
data	point	corresponding	to	the	broad	taxonomic	grouping	of	the	
organism.	Broad	taxonomic	groups	included	aquatic	invertebrates	
(AI),	 aquatic	 vertebrates	 (AV),	 terrestrial	 invertebrates	 (TI)	 and	
aquatic	plants	and	algae	(APA).	Dataset	two	did	not	contain	any	TI	
data.	APA	organisms	were	used	in	the	base	model	and	given	zeroes	
for	 all	 dummy	variables.	 Two	other	dummy	variable	 groups	were	
included	 to	 determine	 if	 significant	 differences	 in	 model	 predic-
tions	 exist	 between	 aquatic	 animals	 (AA)	 and	 terrestrial	 animals,	
and	between	animals	(AN)	and	APA.	Candidate	models	included	a	
single	continuous	predictor	 (AFDW,	DW,	percent	protein,	or	per-
cent	 lipid)	and	a	subset	of	nonoverlapping	dummy	variables	 (e.g.,	
AA	and	AI	would	not	be	included	in	the	same	model),	resulting	in	
22	candidate	models	for	dataset	one	(for	AFDW	and	DW)	and	20	
candidate	models	for	dataset	two	(including	all	predictor	variables).	

Candidate	 models	 were	 limited	 to	 one	 continuous	 predictor	 per	
model	due	to	significant	colinearity	among	predictors	(variance	in-
flation	factor	>	10).

Both	model	sets	were	compared	independently	using	Akaike's	
Information	 Criterion	 corrected	 for	 small	 sample	 sizes	 (AICc;	
Burnham	 &	 Anderson,	 2002).	 Candidate	 models	 were	 ranked	
based	on	their	AICc	scores	and	 log‐likelihood	(LogL),	R2	adjusted	
for	number	of	predictors,	cumulative	Akaike	weights	(wi),	and	the	
difference	between	the	given,	and	best‐fitting	model	(∆i)	was	cal-
culated	for	each	model	(Burnham	&	Anderson,	2002).	The	best‐fit-
ting	model	was	determined	by	the	lowest	AICc	score	(a	∆i	value	of	
0.0);	however,	a	∆i	of	<2	was	also	considered	to	have	substantial	
support	 (Burnham	&	Anderson,	 2002).	 Any	model	with	 a	 ∆i	 be-
tween	4	and	7	was	considered	to	have	considerably	less	support,	
and	∆i	 values	>10	were	assumed	 to	have	essentially	no	 support.	
The wi	score	is	considered	analogous	to	the	probability	that	a	can-
didate	model	 is	 the	 best	 supported	 of	 the	 given	 set	 of	 models.	
The	standardization	of	continuous	variables	to	a	mean	of	zero	and	
standard	deviation	of	one	is	recommended	when	interpreting	the	
effect	of	dummy	variables	(Legendre	&	Legendre,	1998).	However,	
the	continuous	predictors	were	 left	unstandardized	as	no	differ-
ences	in	results	were	observed	after	standardization.	Leaving	data	
in	this	format	allowed	for	the	simpler	application	of	models	in	pre-
dicting	ED.	All	statistical	analyses	were	conducted	using	R	statisti-
cal	software	(R	Core	Team,	2017).

2.3 | Cross‐validation

To	assess	the	error	associated	with	the	best	supported	models,	we	
performed	an	 iterative	 cross‐validation	on	our	dataset.	Data	were	
randomly	divided	into	either	training	(80%	of	observations)	or	test-
ing	datasets	(20%	of	observations).	The	training	dataset	was	used	to	
develop	a	predictive	equation	based	on	each	of	 the	five	best	sup-
ported	 models	 determined	 through	 AICc.	 These	 equations	 were	
used	to	predict	ED	values	for	the	testing	dataset.	Root	mean	square	
error	 (RMSE)	was	calculated	 to	evaluate	 the	discrepancy	between	
predicted	 and	 observed	 values.	 This	 process	was	 iterated	 10,000	
times	for	each	of	the	five	best	supported	models.

3  | RESULTS

Eleven	publications	were	found	that	met	the	criteria	for	dataset	
one	(publications	that	measured	both	DW	and	AFDW),	of	which	
200	 organisms,	 ontogenetic	 stages	 or	 seasonal	 records	 were	
tabulated.	 Broad	 taxonomic	 coverage	 included	 107	 records	 of	
aquatic	 invertebrates,	 30	 of	 aquatic	 vertebrates,	 43	 of	 aquatic	
plants	and	algae,	and	20	of	terrestrial	invertebrates.	Spatial	cov-
erage	included	oceanic	waters	from	the	North	and	South	Atlantic	
as	well	 as	 the	 Pacific	Ocean,	 freshwater	 data	 from	 Europe	 and	
terrestrial	sources	from	North	America	and	Australia.	Terrestrial	
insects	 reared	 in	 the	 laboratory	were	 also	 included	 as	 a	 source	
in	 the	 model	 (Woodland	 et	 al.,	 1968).	 The	 temporal	 extent	 of	
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F I G U R E  1  Model	comparison	for	full	dataset	of	literature	values	reporting	percent	dry	weight	(a)	and	percent	ash‐free	dry	weight	(b);	
both	axes	on	a	logarithmic	scale

F I G U R E  2  Model	comparison	for	trimmed	dataset	including	all	hypothesized	predictors	of	energy	density:	(a)	log10	percent	ash‐free	dry	
weight,	(b)	log10	percent	dry	weight,	(c)	log10	percent	protein	content,	(d)	log10	percent	lipid	content
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sampling	 occurred	 in	 every	 season	 across	 a	 five‐decade	 span	
(1962–2007).	 Three	 publications	 met	 our	 criteria	 for	 the	 direct	
measurement	of	ED	and	AFDW	that	also	included	measurements	
of	 percent	 protein	 and	 percent	 lipid	 content	 (dataset	 2).	 These	
26	organisms	included	19	aquatic	invertebrates,	2	aquatic	plants,	
and	5	aquatic	vertebrates	and	were	sampled	 in	 the	Atlantic	and	
Pacific	Oceans	between	1962	and	2007.

Using	 dataset	 one,	 a	 significant	 positive	 relationship	 was	 ob-
served	between	ED	and	DW	 (Figure	1a,	R2	 =	0.85	p	 <	 .0001).	An	
even	stronger	positive	relationship	was	observed	between	ED	and	
AFDW	(Figure	1b,	R2	=	0.97,	p	<	.0001).	Shifting	from	DW	to	AFDW	
predictors	 removed	the	bias	 in	ED	predictions	 for	aquatic	 inverte-
brates	at	 relatively	 low	values	of	DW	and	AFDW.	Similar,	positive	
relationships	emerged	using	dataset	two.	ED	was	again	significantly,	
positively	related	to	DW	(Figure	2a,	R2	=	0.96,	p	<	 .0001).	ED	was	
also	significantly,	positively	related	to	AFDW	(Figure	2b,	R2	=	0.99,	
p	<	.0001).	ED	was	significantly,	positively	related	to	percent	protein;	
however,	 the	strength	of	 the	 relationship	was	much	 less	 than	was	
observed	for	either	DW	or	AFDW	(Figure	2c,	R2	=	0.59,	p	<	.0001).	
Surprisingly,	ED	showed	no	significant	relationship	to	percent	 lipid	
(Figure	2d,	R2	=	0.00,	p	=	.3).

AICc	 model	 selection	 results	 for	 dataset	 one	 revealed	 that	
all	models	 that	 included	AFDW	as	 a	 predictor	were	 superior	 to	
those	 including	 DW,	 with	 AIC	 differing	 by	 more	 than	 310	 be-
tween	the	best	performing	DW	model	relative	to	the	worst	per-
forming	AFDW	model	(Table	1).	Of	the	22	candidate	models,	the	

best‐supported	model	 to	 predict	 ED	was	 AFDW	 +	 aquatic	 ani-
mals	(AA)	+	terrestrial	invertebrates	(TI;	Table	1).	A	second	model	
predicting	 ED	 by	 AFDW	 +	 aquatic	 invertebrates	 (AI)	 +	 aquatic	
vertebrates	 (AV)	 +	 TI	 also	 received	 substantial	 support,	 which	
splits	 AA	 into	 its	 two	 separate	 parameters	 (AI	 and	 AV).	 Three	
additional	models	received	some	support	in	the	model	selection.	
AFDW	+	AA,	AFDW	+	AI	+	AV	and	AFDW	+	AN	all	exhibited	non-
zero	wi	scores	during	model	selection	(Table	1).	The	R

2	value	for	
all	five	of	the	top	models	was	0.98.	The	predictive	equations	in-
cluding	 correction	 factors	 for	 broad	 taxonomic	 groups	 in	 these	
top	models	are	presented	in	Table	2.

AICc	model	 selection	 results	 for	dataset	 two	produced	 results	
similar	 to	 the	 previous	 dataset,	 with	 AFDW	 +	 AA	 ranking	 as	 the	
top	model	in	the	set	(Table	3).	Again,	the	model	splitting	AA	into	AI	
and	AV	received	substantial	support	and	AFDW	+	AI	also	received	
some	support.	All	other	models	including	AFDW	as	a	predictor	did	
not	 receive	 empirical	 support	 relative	 to	 the	 top	model.	 All	mod-
els	 including	AFDW	were	followed	in	the	model	selection	table	by	
those	including	DW,	then	percent	protein	and	lastly,	percent	 lipids	
(Table	 3).	 It	 should	 be	 noted	 though	 that	 all	 the	models	 including	
AFDW	or	DW	as	predictors	in	the	reduced	dataset	had	high	predic-
tive	power	with	R2	>	0.96	(Table	3).

The	 five	 best	 supported	 models	 chosen	 for	 cross‐validation	
(Table	2)	all	included	AFDW	as	a	predictor.	RMSE	values	for	all	mod-
els	ranged	between	0.03	and	0.11	for	individual	iterations	(Figure	3)	
with	an	overall	mean	of	0.06	for	all	models.

Model k LogL AICc ∆i wi R2

AFDW	+	AA	+	TI 5 273.03 −535.76 0.00 0.55 0.98

AFDW	+	AI	+	AV	+	TI 6 273.40 −534.37 1.39 0.27 0.98

AFDW	+	AA 4 270.28 −532.36 3.39 0.10 0.98

AFDW	+	AI	+	AV 5 270.42 −530.54 5.22 0.04 0.98

AFDW	+	AN 4 269.28 −530.36 5.39 0.04 0.98

AFDW	+	AI 4 255.32 −502.44 33.31 0.00 0.97

AFDW	+	AI	+	TI 5 255.33 −500.35 35.41 0.00 0.97

AFDW	+	AV 4 250.15 −492.09 43.67 0.00 0.97

AFDW	+	AV	+	TI 5 250.16 −490.02 45.74 0.00 0.97

AFDW 3 245.37 −484.62 51.14 0.00 0.97

AFDW	+	TI 4 245.92 −483.63 52.13 0.00 0.97

DW	+	AN 4 90.41 −172.61 363.15 0.00 0.87

DW	+	AI	+	AV	+	TI 6 91.79 −171.14 364.62 0.00 0.87

DW	+	AA	+	TI 5 90.59 −170.87 364.88 0.00 0.87

DW	+	AA 4 83.73 −159.26 376.50 0.00 0.86

DW	+	AI	+	AV 5 84.33 −158.35 377.41 0.00 0.86

DW	+	AV	+	TI 5 83.15 −155.99 379.76 0.00 0.86

DW	+	AV 4 80.20 −152.19 383.57 0.00 0.85

DW	+	AI	+	TI 5 80.98 −151.66 384.10 0.00 0.85

DW	+	AI 4 78.71 −149.22 386.53 0.00 0.85

DW	+	TI 4 78.64 −149.08 386.67 0.00 0.85

DW 3 77.26 −148.40 387.36 0.00 0.85

TA B L E  1  Log‐likelihood	(LogL)	
and	Akaike's	information	criterion	
corrected	for	small	sample	sizes	(AICc)	
for	generalized	linear	models	relating	
energy	density	to	percent	dry	weight	
(DW)	and	percent	ash‐free	dry	weight	
(AFDW),	including	dummy	variables	
(value	of	0	or	1)	for	large	taxonomic	
groups	(AA,	aquatic	animals;	AI,	aquatic	
invertebrates;	AN,	animal;	AV,	aquatic	
vertebrates;	TI,	terrestrial	invertebrates;	
aquatic	plants	and	algae	were	used	in	the	
base	model	and	therefore	were	not	given	
a	dummy	value).	The	number	of	model	
parameters	(k),	cumulative	Akaike	weights	
(wi),	adjusted	percent	R

2 values and the 
difference	between	the	given	and	best‐
fitting	model	(∆i)	are	presented	for	each	
candidate	model
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TA B L E  2  Equations	and	correction	factors	(CF)	for	all	generalized	linear	models	relating	energy	density	(kJ/g	wet	weight)	to	both	percent	
dry	weight	(DW)	and	percent	ash‐free	dry	weight	(AFDW)	including	dummy	variables	(value	of	0	or	1)	for	large	taxonomic	groups;	AA,	
aquatic	animals;	AI,	aquatic	invertebrates;	AN,	animals;	AV,	aquatic	vertebrates;	TI,	terrestrial	invertebrates.	The	difference	between	the	
given	and	best‐fitting	model	(∆i)	and	adjusted	percent	R

2	values	are	presented	for	each	candidate	model

Model ∆i Equation CF R2

AFDW	+	AA	+	TI 0 log10(ED)	=	1.07*log10(AFDW)	−	0.80 AA	=	0.09,	TI	=	0.04 0.98

AFDW	+	AA 3.39 log10(ED)	=	1.08*log10(AFDW)	−	0.79 AA	=	0.07 0.98

AFDW	+	AN 5.39 log10(ED)	=	1.05*log10(AFDW)	−	0.78 AN	=	0.08 0.98

AFDW	+	AI 33.31 log10(ED)	=	1.08*log10(AFDW)	−	0.77 AI	=	0.05 0.97

AFDW	+	AI	+	TI 35.41 log10(ED)	=	1.08*log10(AFDW)	−	0.77 AI	=	0.05,	TI	=	0.00 0.97

AFDW	+	AV 43.67 log10(ED)	=	1.04*log10(AFDW)	−	0.71 AV	=	0.04 0.97

AFDW	+	AV	+	TI 45.74 log10(ED)	=	1.04*log10(AFDW)	−	0.71 AV	=	0.04,	TI	=	0.00 0.97

AFDW	+	TI 52.13 log10(ED)	=	1.06*log10(AFDW)	−	0.72 TI	=	−0.02 0.97

DW	+	AN 363.2 log10(ED)	=	1.21*log10(DW)	−	1.15 AN	=	0.14 0.87

DW	+	AI	+	AV	+	TI 364.6 log10(ED)	=	1.18*log10(DW)	−	1.10 AI	=	0.12,	AV	=	0.18,	TI	=	0.17 0.87

DW	+	AA	+	TI 364.9 log10(ED)	=	1.20*log10(DW)	−	1.14 AA	=	0.14,	TI	=	0.16 0.87

DW	+	AA 376.5 log10(ED)	=	1.24*log10(DW)	−	1.13 AA	=	0.09 0.86

DW	+	AI	+	AV 377.4 log10(ED)	=	1.22*log10(DW)	−	1.10 AI	=	0.08,	AV	=	0.12 0.86

DW	+	AV	+	TI 379.8 log10(ED)	=	1.13*log10(DW)	−	0.96 AV	=	0.10,	TI	=	0.10 0.86

DW	+	AV 383.6 log10(ED)	=	1.17*log10(DW)	−	1.00 AV	=	0.08 0.85

DW	+	AI	+	TI 384.1 log10(ED)	=	1.21*log10(DW)	−	1.07 AI	=	0.06,	TI	=	0.09 0.85

DW	+	AI 386.5 log10(ED)	=	1.23*log10(DW)	−	1.08 AI	=	0.04 0.85

DW	+	TI 386.7 log10(ED)	=	1.17*log10(DW)	−	1.00 TI	=	0.07 0.85

DW 387.4 log10(ED)	=	1.19*log10(DW)	−	1.02 – 0.85

Model k LogL AICc ∆i wi R2

AFDW	+	AA 4 45.66 −81.42 0.00 0.65 0.99

AFDW	+	AI	+	AV 5 46.49 −79.97 1.45 0.32 0.99

AFDW	+	AI 4 42.40 −74.89 6.54 0.02 0.99

AFDW 3 39.07 −71.05 10.37 0.00 0.99

AFDW	+	AV 4 39.15 −68.40 13.03 0.00 0.99

DW 3 24.44 −41.79 39.63 0.00 0.96

DW	+	AI 4 24.85 −39.80 41.62 0.00 0.96

DW	+	AA 4 24.64 −39.37 42.05 0.00 0.96

DW	+	AV 4 24.60 −39.30 42.12 0.00 0.96

DW	+	AI	+	AV 5 24.87 −36.74 44.68 0.00 0.96

Protein	+	AA 4 −1.02 11.94 93.36 0.00 0.71

Protein	+	AI	+	AV 5 −0.88 14.76 96.18 0.00 0.70

Protein 3 −5.74 18.56 99.98 0.00 0.59

Protein	+	AI 4 −4.73 19.36 100.78 0.00 0.61

Protein	+	AV 4 −5.71 21.33 102.75 0.00 0.58

Lipid	+	AI 4 −12.48 34.87 116.29 0.00 0.29

Lipid	+	AI	+	AV 5 −12.47 37.95 119.37 0.00 0.26

Lipid	+	AV 4 −14.32 38.55 119.98 0.00 0.18

Lipid 3 −17.46 42.00 123.43 0.00 0.00

Lipid	+	AA 4 −17.28 44.47 125.89 0.00 −0.03a

aNegative	adjusted	R2	was	obtained	by	fitting	a	model	with	low	multiple	R2,	using	multiple	predictors.	

TA B L E  3  Regression	statistics,	log‐
likelihood	(LogL)	and	Akaike's	information	
criterion	corrected	for	small	sample	sizes	
(AICc)	for	generalized	linear	models	of	
a	trimmed	dataset	comparing	energy	
density	values	to	percent	ash‐free	dry	
weight	(AFDW),	percent	dry	weight	(DW),	
percent	protein	content,	and	percent	
lipid	content	including	dummy	variables	
(value	of	0	or	1)	for	large	taxonomic	
groups	(AA,	aquatic	animals;	AI,	aquatic	
invertebrates;	AV,	aquatic	vertebrates;	
aquatic	plants	and	algae	were	used	in	the	
base	model	and	therefore	were	not	given	
a	dummy	value).	The	number	of	model	
parameters	(k),	cumulative	Akaike	weights	
(wi),	adjusted	percent	R

2 values and the 
difference	between	the	given	and	best‐
fitting	model	(∆i)	are	presented	for	each	
candidate	model
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4  | DISCUSSION

We	 provide	 a	 robust	 and	 accurate	model	 to	 estimate	 the	 ED	 of	 a	
taxonomically	diverse	group	of	organisms	using	a	 simple	and	easily	
calculated	metric:	AFDW.	The	 tight	 correlation	between	 these	 two	
variables	(R2	=	0.97)	represents	the	association	between	total	organic	
energy	(AFDW)	and	ED.	Organisms	of	interest	need	only	be	weighed	
for	wet	and	dry	weights,	then	burned	 in	a	muffle	furnace	to	obtain	
ash‐weight	 (drying	 and	 ashing	 methods	 described	 in	 Cummins	 &	

Wuycheck,	 1971).	 Subtracting	 ash	 component	 from	 the	dry	weight	
and	dividing	this	value	by	the	wet	weight	produces	a	value	for	percent	
AFDW	that	can	then	be	used	to	calculate	ED	using	one	of	the	equa-
tions	listed	in	Table	2.	This	procedure	takes	very	little	time	and	has	lit-
tle	to	no	cost	requirements	besides	access	to	a	drying	oven	and	muffle	
furnace;	hundreds	of	samples	can	be	run	in	as	little	as	a	few	days.	The	
prerequisite	technical	requirements	needed	to	operate	a	bomb	calo-
rimeter	or	to	extract	proximate	components	are	also	avoided.	Weight	
requirements	for	the	sample	are	only	limited	by	the	power	and	preci-
sion	of	scales	used	to	measure	AFDW.	This	method	can	be	used	to	
calculate	ED	for	very	small	organisms	and	will	also	allow	researchers	
to	easily	evaluate	 individual‐level	variability	of	ED	 for	organisms	as	
small	as	a	few	milligrams.	The	removal	of	ash‐weight	from	measure-
ments	also	eliminates	the	error	associated	with	indigestible	bone,	salt,	
or	calcium	carbonate	fraction	can	vary	considerably	among	taxa.

AFDW	 models	 were	 improved	 with	 the	 addition	 of	 dummy	
variables	 for	 broad	 taxonomic	 groups.	 Correction	 factors	 for	
aquatic	animals	 (AA)	and	terrestrial	 invertebrates	 (TI)	 resulted	 in	
the	 need	 for	 an	 intercept	 adjustment	 of	 0.09	 and	 0.04,	 respec-
tively.	The	need	for	these	corrections	likely	arose	from	differences	
between	taxonomic	groups	covered	by	the	dataset.	Aquatic	plants	
and	algae	(APA)	were	used	in	the	base	model	to	estimate	ED	when	
using	dummy	variables.	Differences	in	ED	among	taxa	for	the	same	
AFDW	or	DW	likely	arise	due	to	differences	in	proximate	constit-
uents.	In	particular,	APA	have	structural	carbohydrates	that	make	
up	their	cell	wall	matrices,	and	thus	have	typically	higher	carbohy-
drate	 contents	 than	animals	 (Graham,	Graham,	&	Wilcox,	2009).	
Low‐ED	 carbohydrates	 present	 in	 the	 cell	 walls	 of	 APA	 would	
bias	 the	overall	model	 toward	 lower	ED	values	 requiring	 the	ap-
propriate	corrections	for	other	taxonomic	groups.	TI	are	typically	
more	energy	dense	than	APA	(Cummins	&	Wuycheck,	1971),	but	
can	have	variable	levels	of	chitin	and	carbohydrate	that	contribute	
to	 total	digestible	energy	 (Bell,	 1990).	Thus,	 an	AFDW	value	 for	
TI	would	produce	 a	higher	 estimate	 than	expected	 compared	 to	
APA	in	a	model	excluding	dummy	variables,	but	a	lower	estimate	
than	expected	for	AA.	By	using	a	model	set	that	includes	intercept	
adjustments	(correction	factors)	for	varied	taxonomic	groups,	we	
provide	a	 robust	method	for	estimating	ED	across	a	much	wider	
range	of	taxa	than	was	available	previously.

Our	 results	 suggest	 that	 AFDW	 is	 a	 superior	 predictor	 of	 ED	
across	taxa	compared	to	previously	used	metrics:	DW,	lipid,	or	pro-
tein	 content	 (Table	3).	 Several	 authors	have	used	constituent	pre-
dictors	to	estimate	ED	of	specific	groups.	Anthony,	Roby,	and	Turco	
(2000)	determined	 that	 lipid	 content	was	 the	best	determinant	of	
ED	 variability	 in	 fishes.	 Lipid	 is	 roughly	 twice	 as	 energy	 dense	 as	
protein	and	is	easily	mobilized	for	use	in	metabolic	activity,	whereas	
protein	is	typically	more	stable,	allocated	to	long‐term	musculature	
associated	with	growth	(Jobling,	1994).	Both	of	these	body	compo-
nents	 are	 typically	 translated	 into	 ED	 estimates	 using	 conversion	
factors,	but	can	overestimate	values	when	energetic	equivalents	are	
taken	from	the	literature	(Craig,	Kenley,	&	Talling,	1978;	Schloesser	
&	Fabrizio,	2015).	Alternatively,	DW	is	often	used	as	a	proxy	for	ED	
instead	of	proximate	components	due	to	its	ease	of	use	and	general	

F I G U R E  3  Frequency	distribution	of	root	mean	squared	errors	
(RMSE)	from	iterative	(n	=	10,000)	cross‐validation	between	a	
training	(80%)	and	testing	(20%)	dataset	for	the	top	five	best	
supported	models	to	estimate	energy	density	(ED)	from	Table	
2.	(a)	ED	=	AFDW	+	AA	+	TI,	(b)	ED	=	AFDW	+	AI	+	AV	+	TI,	(c)	
ED	=	AFDW	+	AA,	(d)	ED	=	AFDW	+	AI	+	AV,	(e)	ED	=	AFDW	+	AN
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applicability	that	avoids	the	need	to	borrow	conversion	values	from	
the	 literature.	The	relationship	between	DW	and	ED	exists	due	to	
the	 inverse	 relationship	 between	 lipid	 and	water	 content	 (Flath	&	
Diana,	 1985).	 Thus,	 DW	 is	 positively	 related	 to	 lipid	 and	 protein	
content	as	well	as	ED.	Hartman	and	Brandt	 (1995)	 first	developed	
a	 general	multi‐species	 as	well	 as	 species‐specific	models	 to	 esti-
mate	ED	from	DW	in	fish	that	have	been	used	in	numerous	growth	
and	bioenergetics	studies	(e.g.,	Johnson	&	Kitchell,	1996;	Penczak,	
Agostinho,	 Hahn,	 Fugi,	 &	 Gomes,	 1999;	 Utz	 &	 Hartman,	 2009).	
Another	 general	model	 has	 been	 developed	 specifically	 for	 inver-
tebrates	using	DW	(James	et	al.,	2012)	that	has	also	been	useful	in	
practice	(e.g.,	Deslauriers	et	al.,	2016;	Hartman,	2017).	To	our	knowl-
edge,	no	general	model	exists	 to	estimate	the	ED	of	both	 inverte-
brates	and	vertebrates	using	AFDW	as	a	predictor.	Our	results	agree	
with	previous	findings	that	suggest	DW	is	a	strong	predictor	of	ED	
(R2	=	0.85);	however,	the	removal	of	ash‐weight	from	DW	estimates	
greatly	improves	model	performance	(R2	=	0.97).	For	some	research-
ers,	 ash‐weight	may	not	be	 realistic	 to	 acquire	 if	 samples	need	 to	
be	 retained	 for	 other	 purposes.	 In	 these	 cases,	DW	models	 could	
still	provide	useful	 insight	 (see	Table	2	for	full	equation	 list	of	DW	
models).	In	instances	where	taxon‐specific	ED	models	have	already	
been	described	using	DW	(e.g.,	Hartman	&	Brandt,	1995;	James	et	
al.,	2012),	researchers	may	not	opt	to	take	the	extra	steps	required	
to	measure	ash‐weight.	Indeed,	previously	described	models	relating	
ED	and	DW	are	 still	 appropriate	 in	 some	situations	 (e.g.,	 Johnson,	
Pate,	&	Hansen,	2017).	However,	our	AFDW	model	would	 remain	
preferable	due	to	its	greater	accuracy	as	well	as	its	ability	to	directly	
compare	aquatic	invertebrates,	vertebrates,	aquatic	plants	and	algae	
as	well	as	terrestrial	invertebrates	using	a	single	predictive	model.

Presently,	there	is	a	dearth	of	data	on	the	ED,	DW,	and	AFDW	of	
terrestrial	vertebrates	and	is	limited	to	passerine	birds	(Holmes,	1976;	
Myrcha	&	 Pinowski,	 1970).	 The	 best‐supported	model	 presented	 in	
this	paper	consistently	underestimates	the	ED	values	observed	in	pas-
serine	birds	by	an	average	of	8.2%	(Figure	4).	This	difference	in	ED	is	
likely	due	to	fundamental	differences	in	metabolic	demands,	between	

terrestrial	 vertebrates	 and	 other	 organisms	 examined	 in	 our	 model	
(Brown,	Gillooly,	Allen,	Savage,	&	West,	2002).	Until	further	data	are	
available	to	evaluate	the	performance	of	our	model	on	terrestrial	ver-
tebrates,	we	recommend	multiplying	back‐transformed	ED	results	by	a	
value	of	1.08	to	account	for	underestimation	in	the	current	model.	Still,	
the	relatively	close	agreement	between	these	data	and	our	model	sug-
gests	that	including	terrestrial	vertebrates	is	possible	and	that	further	
development	of	this	model	could	provide	a	general	method	to	estimate	
the	ED	of	any	organism	regardless	of	habitat	or	taxon.

The	application	of	these	models	will	be	of	immediate	utility	in	bioen-
ergetics	and	growth	studies	that	require	ED	estimates	for	both	consum-
ers	and	their	prey.	Regularly,	these	values	are	taken	from	the	literature	
instead	of	being	directly	measured	or	estimated	(e.g.,	Moss	et	al.,	2009;	
Spitz,	Mourocq,	Leauté,	Quéro,	&	Ridoux,	2010).	Although	this	practice	
is	commonplace,	literature	values	are	often	unrepresentative,	averaging	
varied	taxa	together	or	borrowing	ED	values	from	similar	species	(Chipps	
&	Wahl,	2008;	Ney,	1993).	This	can	introduce	substantial	error	into	model	
estimates.	In	one	example,	investigators	found	that	prey	consumption	was	
overestimated	by	as	much	as	22%	when	using	a	model	that	borrowed	ED	
values	from	the	literature	(Johnson	et	al.,	2017).	When	these	values	were	
instead	predicted	from	DW,	the	authors	found	a	significant	reduction	in	
error	between	observed	and	predicted	values.	Analyses	like	this	confirm	
the	accuracy	and	ease	with	which	these	general,	multi‐species	models	can	
be	employed.	The	benefit	of	our	method	over	previous	estimation	models	
is	the	generality	that	it	provides	across	species	and	systems.	For	instance,	
aquatic	vertebrates	typically	feed	across	multiple	trophic	levels	and	can	as-
similate	energy	from	pelagic,	benthic,	and	terrestrial	systems	(Pauly,	Trites,	
Capuli,	&	Christensen,	1998;	Vander	Zanden	&	Vadeboncoeur,	2002).	The	
equations	provided	in	Table	2	would	be	of	particular	use	in	these	situations	
where	researchers	aim	to	answer	questions	related	to	growth,	diet,	and	
foraging	behavior	of	complex	and	interconnected	systems.
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