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1 Introduction8

There are many simultaneous pathways by which regional climate can drive9

interannual or longer-term variation in primary production in coastal and es-10

tuarine waters. Changes in riverflow volume and timing, deep inputs from the11

open ocean, wind patterns, surface heating, and cloud cover and hence light12

availability—a partial list—all affect primary production by distinct mecha-13

nisms. These climate-linked environmental factors are often highly correlated14

in historical time series, but may not maintain these correlations into the future15

as the climate changes; as a result, statistical approaches struggle to identify16

the specific mechanisms driving historical variability, or the possibly distinct set17

of mechanisms that will drive future change in marine food webs.18

The gold standards in this type of research are long multivariate time series19

with good spatial coverage (e.g. CalCOFI in Southern California) and coupled20

hydrodynamic-biogeochemical models driven by regional climate downscalings,21

well-validated on a range of system levels and scales. These comprehensive22

datasets generally do not exist, and multi-decadal regional simulations are so23

cumbersome that even when they do exist, there are invariably system levels24

at which the key mechanisms have never been directly verified and uncertainty25

has not been systematically examined. An alternate use of models—which we26

suggest deserves more articulation and recognition in global change biology—is27

as a means of rejecting hypotheses rather than promoting them: that is, as a28

means of ranking and winnowing a tangle of competing mechanisms, as a guide29

for further empirical research.30

This study consists of a synthesis of results from hydrodynamically simple31

(1D) and detailed (3D) models of Puget Sound, USA and the greater Salish32
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Sea, organized around an effort to reduce a conceptual diagram of possible33

climate-impact pathways from spaghetti (Fig. 1) to a focused research agenda.34

Primary production affects countless aspects of the marine ecosystem but we35

have organized our analysis around two larger concerns.36

First, chinook, steelhead, and coho salmon runs in the Salish Sea have all37

experienced tenfold declines in marine survival over the past 30 years (Zimmer-38

man et al., 2015), while chinook and coho on the outer Washington and British39

Columbia coasts have not shown any matching trend. Active hypotheses that40

might explain this long-term decline are extremely diverse, encompassing in-41

creases in predators, declines in forage fish, changes in physical habitat, chem-42

ical pollution, and many other factors; but within this field of inquiry is the43

fundamental question of whether bottom-up changes beginning at the base of44

the marine food web could be responsible. Tracing changes in phytoplankton45

production step-by-step through the long trophic chains that support salmon is46

well beyond the scope of this study, but with existing oceanographic and earth-47

system models we are able to begin to evaluate potential past and future trends48

in i) annual primary production and ii) the timing of the spring bloom. We49

also analyze patterns in iii) spring and summer phytoplankton concentrations,50

motivated by a non-trophic hypothesis: the possibility that dense phytoplank-51

ton blooms during critical outmigration times change the underwater light field52

sufficiently to disrupt visual search.53

Second, harmful blooms of the dinoflagellate Alexandrium catenella, which54

produces powerful neurotoxins that lead to paralytic shellfish poisoning (PSP),55

have increased in Puget Sound over the past half-century (Moore et al., 2011).56

The seasonal/spatial window of opportunity for A. catenella harmful algal blooms57

(HABs) has been linked to high water temperatures, and this window has ex-58

panded over recent decades and is projected to expand further (Moore et al.,59

2011, 2015). Within the window of opportunity, the occurrence of Alexandrium60

blooms is likely tied to local oceanography via the transport and dispersion of61

overwintering cysts (Horner et al., 2011)—dynamics that have provided signif-62

icant predictive ability elsewhere (McGillicuddy et al., 2011)—but also tied to63

phytoplankton community dynamics and succession. For our purposes, the phe-64

nology of the spring bloom (ii), as well as iv) the occurrence or non-occurrence65

of strong nutrient limitation in summer, serve as a bridge from Puget Sound66

oceanography and regional climate to the ecological dimensions of Alexandrium67

HABs, which a lack of detailed, sustained observations has to date left in the68

realm of speculation (Moore et al., 2015).69

Ultimately we would want to evaluate spatial variation in metrics –iv) in70

detail, but for this study we confine ourselves to a typical location in central71

Main Basin (Fig. 2), insofar as there is any typical location in this complex72

inland sea.73

1.1 Initial conceptual model74

Our a-priori conceptual diagram (Fig. 1) does not include every possible route75

from regional climate to primary production, but rather a pre-selection based76
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Figure 1: Potential mechanistic pathways from regional climate variability to
primary production in the main stem of Puget Sound, away from areas of lo-
calized, strong terrestrial influence. Each arrow (X �! Y ) can be read as “In-
terannual and longer-term variability in X causes interannual variability and
longer-term in Y ”: shorter timescales of variation are not included. Patterns of
primary production are represented by four metrics (green shaded box) which
have been hypothesized to drive two types of further ecological effects (right).
Other pathways of influence on salmon marine survival and Alexandrium HABs,
e.g. direct temperature effects on Alexandrium growth (Moore et al., 2015), are
omitted. Compare Fig. 20.
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Figure 2: Map of study area. —Washington Department of Ecology (DOE)
long-term monitoring station PSB003 (black square), near West Point, is the
focus of the analysis.
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on past research in this system (Winter et al., 1975; Newton and Van Voorhis,77

2002; Banas et al., 2014; Moore et al., 2015). In general, primary production78

is regulated by light availability (pathway L) and nutrient availability (S). In79

addition, temperature (H) affects both the maximum growth rate of the phy-80

toplankton community and the rate of losses to micrzooplankton and other81

grazers. Light limitation is regulated by incoming photosynthetically available82

radiation (PAR) and hence cloud cover (pathway A, D); the per-meter un-83

derwater light attenuation, which varies strongly with watershed inputs (B);84

and also vertical mixing and advection (K, O), which control the depth range85

over which phytoplankton cells are dispersed and hence the light level they86

experience. Nutrient flux into the euphotic zone is also controlled by vertical87

mixing and advection (R, R), and potentially by changes in the concentration88

of nutrients in incoming ocean water (T, U). In other estuaries, changes in89

river-derived nutrients would be of first-order importance as well, but nutrients90

in Puget Sound are overwhelmingly ocean-derived (Mackas and Harrison, 1997;91

Mohamedali et al., 2011). Watershed-derived nutrients have been found to have92

notable effects on Puget Sound water quality (Khangaonkar et al., 2019) but93

these effects are spatially limited (Banas et al., 2014), and the conceptual model94

and analysis in this study are designed to describe the main stem of Main Basin,95

away from localised areas of more intense river influence.96

Along-channel gradients in nutrients and phytoplankton concentration are97

relatively weak in Main Basin (Winter et al., 1975, analysis below) and this98

invites us to consider primary production in a 1-D, single-water-column frame-99

work, a modified version of a classic open-ocean scenario. Seasonally varying100

stratification and mixing are the crucial physical controls on primary production101

in this classic, mid-latitude framework, with mixing regulating light limitation102

in early spring (K) and hence the timing of bloom initiation, and regulating103

nutrient availability through the late spring and summer (P), once the phy-104

toplankton have drawn down the initial stock of euphotic-zone nutrients left105

over from winter. Near-surface mixing is driven in part by wind stress (E), and106

in part (in shallow areas especially) by the tides; we have assumed that the107

tides do not respond significantly to climate change and neglected them in our108

schematic, which is meant to represent mechanisms of variability and change109

on annual to decadal scales. The intensity of mixing that results from a given110

input of wind or tidal energy is strongly regulated by stratification, and con-111

versely stratification records a history of the amount of mixing that has recently112

occurred (J). Since measurements of stratification are far easier and far more113

common than measurements of turbulent mixing, the literature often elides the114

distinction and refers to “the effect of stratification on primary production”;115

but in a highly dynamic, advective environment like an estuary, the distinction116

between “mixed” water and “mixing” water—that is, low stratification and high117

turbulent mixing intensity—is potentially very important (Collins et al., 2009;118

Franks, 2015). Riverflow affects estuarine hydrography and energetics through119

a complex set of feedbacks, but in a first approximation, it drives changes in120

stratification directly (I), and changes in mixing only indirectly (I! J). Surface121

heating can also affect stratification (F), although this effect is usually weaker122
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than river/salinity effects in temperate estuaries.123

In Main Basin as in other estuaries, the density contrast between river and124

ocean inputs drives an “in–up–out” overturning or estuarine circulation (M, N,125

Q), which regulates the system’s overall residence time. The “up” branch of126

this circulation is the mechanism of mean vertical advection mentioned above, a127

potentially important contributor to near-surface nutrients (R). The inclusion128

of upward advection reflecting the system-scale circulation and residence time129

is the crucial addition that turns a generic water-column model into a estuar-130

ine water column (Winter et al., 1975; Collins et al., 2009). The along-channel131

component of the estuarine circulation also needs to be included in tracer bud-132

gets if along-channel tracer gradients are large, although we find that for Main133

Basin chlorophyll and nitrate they are not (Sec. 2.3.1), and care must be taken134

to preserve mass conservation in tracer budgets in any case.135

The aim of this study is to compare the strength of the many interwoven136

pathways in this conceptual model, in a general, scaling sense rather than a de-137

tailed, scenario-specific sense, and produce a simplified conceptual model that138

eliminates the second-order factors that are overwhelmed by other mechanisms139

on interannual and longer timescales. This requires associating a scale of vari-140

ation with each atmospheric, watershed, and oceanic driver (Fig. 1, blue), and141

a sensitivity with each mechanistic link (arrows). Estimates of these quantities142

were assembled from a family of recent model studies that, together, more or143

less span the timescales and levels of physical and biological process detail re-144

quired. The results suggest specific research agendas for future oceanographic,145

atmospheric, and hydrological modelling in Puget Sound and its watershed.146

2 Methods147

2.1 Observations148

In situ time series Nutrients and biomass Monthly sampling at Washington149

Department of Ecology (DOE) long-term monitoring station PSB003 provided150

core time series of temperature, salinity, chlorophyll, nitrate and ammonium151

at our study site, at approximately monthly resolution. Chlorophyll estimates152

are from calibrated fluorometer profiles at 0.5 m resolution, while, nitrate and153

ammonium concentrations are from bottle samples, generally at 1, 10 and 30154

meter depth (Fig. 3). In our analysis, near-surface temperature T20 is defined155

as 0–20 m average of approximately monthly observations from PSB003, 1999–156

2017 (Fig. 4). Density stratification �� is defined as the difference between 5–20157

m average density and 0–5 m average density.158

Riverow Time series of riverflow Qr (Fig. 5) were derived from USGS gauge159

data combined with corrections for gauged/ungauged watershed area, as in the160

setup of the LiveOcean model described below. Qr is defined as the sum of161

flows from four rivers that enter Puget Sound up-estuary from the study lo-162

cation (Deschutes, Nisqually, Puyallup and Green), as well as the Cedar, Sno-163
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Figure 3: Chlorophyll, nitrate, and ammonium data from Washington Depart-
ment of Ecology station PSB003 in central Main Basin. Approximately 160
profiles over 17 years for Chlorophyll and 130 profiles over 12 years for nitrate
and ammonium are shown.
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Figure 4: Annual surface temperature from monthly observations 1999–2018
showed averaged for the spring and the summer season.
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Figure 5: Total riverflow from the eight Puget Sound rivers included in the anal-
ysis (see text), shown as (top) 10-day averages April–September of individual
years, and (bottom) annual averages 1964–present.

homish, Stillaguamish and Skagit, which supply a much larger freshwater flux164

that enters Main Basin not far down-estuary (see Banas et al. (2014) for map-165

ping of the influence of individual river inputs across seasons in the MoSSea166

model). Including discharge from all eight of these rivers, instead of only the167

four up-estuary rivers, slightly increases the Pearson coefficient of the regression168

analysis below (Sec. 3.1). Most of these observational records run from 1964–169

present, except for the Deschutes (1991–) and Nisqually (1978–). These rivers170

with shorter records represent only 1% and 3.8% of total riverflow, respectively.171

2.2 Models172

Past and new analysis of six models were synthesized in this study (Table 1).173

LiveOcean is a coupled physical-biogeochemical forecast model for the Salish174

Sea and Pacific Northwest outer coast (Fig. 6, built using the Regional Ocean175

Modeling System (ROMS). It has produced continuous 3 d forecasts since 2013,176

with a switch to much higher resolution (500 m) in the Salish Sea in 2017: in177
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Table 1: Ocean and atmospheric models used in this study.
Model Domain Type Time period References
NNRP/WRF Atmosphere 3D 1950–2010 Dulière et al.

(2011)
ROMS
Cascadia

Coastal ocean 3D 2003–2009 Stone et al.
(2018)

LiveOcean Coastal ocean
+ Salish Sea

3D 2017–2019

PS-1D Salish Sea 1D representative
seasonal cycle

this study

SOG Salish Sea 1D 1968–2010 Collins et al.
(2009), Allen
and Wolfe
(2013)

CCSM3/WRF/
ROMS

Atmosphere +
Coastal ocean
+ Salish Sea

3D 2040s projection Moore et al.
(2015)

this study we use the archived forecasts from 2017–2018 as a de facto hindcast.178

LiveOcean is forced by the global ocean model HYCOM on its outer boundary,179

daily flow estimates for 45 rivers based on USGS gauge data, and high-resolution180

atmopsheric forcing from a WRF (Weather Research and Forecasting) model181

run by the UW Mesoscale Analysis and Forecasting Group. Davis et al. (2014)182

describes the model’s plankton dynamics in detail, including parameterization183

and validation using a variety of observations from the outer coast. Siedlecki184

et al. (2015) describes the dissolved-oxygen component.185

Two years of hourly physical variables were extracted from LiveOcean along186

an east–west section line close to PSB003 (Fig. 2). All data were tidally av-187

eraged using a Godin filter and subsampled into daily values, and horizontally188

averaged. Vertical diffusivity �v was averaged over the top 20 m, and stratifica-189

tion �� was defined over the top 20 m as for DOE observations (Fig. 16). This190

depth range was chosen to isolate processes relevant to phytoplankton growth.191

Coordinated time series of three driving variables were also defined: wind stress192

� at the same section line, rms tidal velocity uT , and riverflow Qr from the193

USGS observations described above.194

LiveOcean, and the MoSSea model of Puget Sound which preceeded it195

(Sutherland et al., 2011), have both been used to quantify the estuarine ex-196

change flow in Puget Sound, although never on the interannual timescale of197

greatest interest here. Results to date from an unpublished analysis of daily198

variation in exchange volume flux over 2017 (MacCready et al., in prep.) in-199

dicate that the classic theories of estuarine circulation, which would suggest200

useful scaling relationships between riverflow and the exchange flow, simply do201

not apply: tidally averaged volume flux through Admirality Inlet does not in-202

crease during periods of increased riverflow, but in fact decreases slightly. This203
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Figure 6: Domain of the LiveOcean model, showing the river inputs included
(left) atop bathymetry, and horizontal resolution (right).

volume flux does show a significant correlation with the along-channel density204

gradient d�=dx, its proximate driver (not shown). However, we speculate that205

d�=dx is fundamentally controlled not by total riverflow in Puget Sound (where206

the largest sources of freshwater are distributed spatially and the largest of all,207

the Fraser River, in fact enters from the “ocean” end), but rather by gradients208

in river influence, which are likely modulated by wind as well as by the rivers209

themselves. Untangling these effects is beyond the scope of this report, and so210

we treat the exchange flow as an independent environmental driver in its own211

right, presumably linked strongly to hydrological and atmospheric drivers, but212

by patterns we cannot presently resolve. LiveOcean results from 2017 are used213

to set an upper limit on the interannual variability of the seasonally-averaged214

exchange flow, for comparison with other drivers.215

ROMS Cascadia is an antecedent to LiveOcean, a hindcast model that re-216

solves outer-coast physics and biogeochemistry at 1.5 km resolution over the217

continental shelf and more coarsely offshore, and includes Salish Sea physics—218

not biogeochemistry—also at 1.5 km resolution, significantly coarser than the219

2017– version of LiveOcean used here. Giddings et al. (2014) described and220

validated the model physics for 2004–2007 and Stone et al. (2018) subsequently221

described interannual variation in shelf and slope waters using a 2003–2009222

hindcast.223

NNRP/WRF is a regional hindcast of weather and climate, 1950–2010. It224

was constructed by downscaling the global, course-scale atmospheric NCAR/225

NCEP Reanalysis (NNRP) with the Weather Research and Forecasting (WRF)226
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Figure 7: Comparison betwenn NNRP/WRF shortwave radiation and SeaTac
observations of cloud cover for summer and spring. Left plot shows both daily
time series. Right plot shows the negative correlation between the two time
series.

model, as described by Dulière et al. (2011).227

Daily values of wind stress over Main Basin, 1950–2010, were calculated from228

wind speed at 13 grid points in NNRP/WRF, converted to wind stress following229

Large and Pond (1981) (Fig. 9). To validate these model results, we compared230

the wind speed time series with data from the SeaTac Airport station (Fig. 8).231

A step change in the SeaTac observations is visible at the end of the 1990s, likely232

the result of a change in the anemometer position (Wan et al. (2010)). After233

the step change, NNRP/WRF and SeaTac observations show similar variations.234

Daily value of PAR values over Main Basin, 1950–2010, were calculated as235

43% of downward shortwave flux at the same 13 grid points in NNRP/WRF. The236

time series of PAR is well-correlated with sunrise-to-sunset average cloudiness237

from the SeaTac Airport station, 1965–1996 (Fig. 7).238

CCSM3/WRF/ROMS is a regional climate–ocean projection, constructed239

by downscaling the global CCSM3-A1B model through WRF, and then using240

this, along with hydrological projections for Puget Sound rivers and the Fraser241

River, to drive a variant of the ROMS Cascadia model. Moore et al. (2015) de-242

scribe a projection for the 2040s made using this coupled system, in comparison243

with a “present-day” (1988) reference case, in the context of potential climate244

impacts on Alexandrium HABs. The major forcing changes in this scenario can245

be summarized as increased air temperatures, a shift toward earlier riverflow,246

and intensified summer upwelling, all close to the mean of the CMIP3 (IPCC247

AR4) ensemble, with offshore oceanic boundary conditions held constant. The248

responses of the marine system to this scenario (Moore et al., 2015) are sum-249

marized in Table 2.250

SOG is a 1D physical–biogeochemical model for the southern Strait of Georgia251

designed for hindcasting and prediction of the timing of the spring phytoplank-252

ton bloom, as described in detail by Collins et al. (2009) and Allen and Wolfe253

(2013). Here it provides independent estimates of four sensitivities calculated254

from LiveOcean and PS-1D (albeit in the Strait of Georgia, not Main Basin):255
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Figure 8: Comparison betwenn NNRP/WRF model output and SeaTac obser-
vations of wind stress. Left plot shows both daily time series. Right plot shows
SeaTac observation versus WRF/NNRP model output.

Figure 9: log10 wind stress daily output from WRF/NNRP model. (top) 10 d
averages, 1950{2010, superimposed as a function of yearday.(bottom) Spring
(Apr{Jun) and summer (Jul{Sep) averages.

12



Variable Change Season
Wind speed � 0.7 m s� 1 spring{summer

Strati�cation
+ 20% spring
� 0 summer

Near-surface temperature
+ 2 � C spring
+ 3 � C summer

Table 2: Estimates of future trends in environmental drivers, from a downscaled
climate projection (CCSM3/WRF) coupled to ROMS Cascadia as described in
Moore et al. (2015). Trends are reported as the absolute change between 2040s
projections and a baseline circa 1990.

the sensitivity of mixing to wind stress, from daily values in 2005 and 2007256

hindcasts; the sensitivity of spring bloom date to temperature, as calculated by257

Allen and Wolfe (2013) from a 1968{2010 hindcast; sensitivity of bloom date258

to light, from Dec{Mar average cloud cover (Allen and Wolfe, 2013) and the259

approximation that as cloud cover varies between 0 and 100%, daily-average260

PAR varies by � 60 W m� 2; and the sensitivity of bloom date to mixing, from261

the sensitivity of bloom date to Dec{Mar average wind stress combined with262

the mixing{wind relationship already mentioned.263

PS-1D is a 1D model designed as a quick-running \sandbox" in which to ex-264

plore the parameter space of the LiveOcean biogeochemical model (Davis et al.,265

2014); determine how its parameterization needs to be changed to correctly rep-266

resent Main Basin as opposed to the o�shore waters for which it was originally267

developed; and perform the numerical experiments which allow us to de�ne268

scales of sensitivity of each primary-production metric to each environmental269

driver (Fig. 1). This model has not been previously described in the literature270

and so we explain it at a medium level of detail below. The full description is271

expected to appear inNguyen (2020).272

2.3 The PS-1D model273

2.3.1 Physical setup274

The physical \sandbox" of the PS-1D model is designed to reproduce a repre-275

sentative seasonal cycle at one location in central Main Basin, as a base case276

around which we can perform experiments addressing the sensitivity of phyto-277

plankton dynamics to environmental conditions and to the assumed biological278

parameters. These analyses have more the avor of laboratory or mesocosm279

experiments than historical analysis|doubling the turbulent mixing, halving280

the incoming light, etc.|and do not attempt to resolve event-scale uctuations,281

for which a 1D model would likely be fundamentally inappropriate.282

In this 1D model, a water column of � 200 meter depth was divided into283

thirty layers, with thinner layers near the surface and thicker layers at the bot-284

tom. Within this grid, the model consists of a set of coupled ordinary di�erential285
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Figure 10: Schematic of physical processes in Main Basin. The study site lies
midway between MB M and MB S, which de�ne the span used to estimate
along-channel gradients.

equations, each one a budget for one biogeochemical tracer (see Sec. 2.3.2).286

Advection The upward velocity wadv representing the estuarine exchange287

ow depends, because of mass conservation, on the along-channel gradient in the288

lower-layer incoming volume ux (Fig. 10). The mid-water-column maximum289

in wadv (Fig. 11) was estimated from the MoSSea model (Sutherland et al.,290

2011) as � Q L � 1 B � 1, where � Q = 3500 m3 s� 1 is the di�erence in lower-layer291

volume uxes between MB M and MB S, L = 26 km is the distance between292

the two sections, andB = 5 km is the channel width. In tuning and sensitivity293

experiments below, the shape of the vertical pro�le ofwadv was kept constant294

and multiplied by a factor representing increases and decreases in the exchange295

ow.296

Observations of chlorophyll, nitrate and ammonium of PRISM stations along297

Puget Sound (black solid points in Fig. 2) in June and December showed negli-298

gible gradients in Main Basin (around 10� 3 at PSB003: not shown). The small299

gradients are consistent with the conclusion ofWinter et al. (1975) that hor-300

izontal advection is not an important term in the budgets of these tracers in301

Main Basin.302

Vertical mixing The vertical di�usivity for tracers � v was likewise taken303

from the 2006 hindcast of the MoSSea model. A climatological vertical pro�le304

was constructed by taking the cross-sectional average di�usivity as a function of305

depth (Fig. 12, black dots) and then averaging in time (blue line). As analysed306

further below using LiveOcean output, monthly or seasonal variation in mixing307

appears to be secondary to shorter-timescale variation, and so we have held308

mixing constant in our representative seasonal cycle. As for vertical advection,309

experiments in which the intensity of mixing is varied multiply this mean pro�le310

by a constant.311

Light Surface light in PS-1D is taken directly from the regional weather model
used to drive MoSSea. Photosynthetically active radiation (PAR) is assumed
to be 43% of downward shortwave radiation. PAR at a given depth,E (z), is

14



Figure 11: Vertical velocity pro�le in the base case of PS-1D.

Figure 12: Vertical pro�les of the vertical di�usivity for tracers, cross-sectionally
averaged in one year of 3D model output (MoSSea, 2006:Sutherland et al.
(2011)). Black dots show daily values, grouped by month, and the blue line
(repeated across panels) is the climatological pro�le used in the PS-1D base
case.
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modelled using three light-attenuation coe�cients as

E(z) = E0 exp
�
� (att bg z + att fw

Z 0

z
(32 � S(z0))dz0+ att P

Z 0

z
P(z0)dz0

�
(1)

where E0 is PAR at the surface (z = 0). The coe�cient att bg is the per-meter312

attenuation by pure seawater; att fw represents attenuation by particles and313

dissolved organic matter associated with freshwater (mathematically speaking,314

attenuation that is correlated with salinity de�cits); and att P represents light315

attenuation by the modelled phytoplankton themselves, i.e., self-shading.316

These are crucial model parameters, and among the most likely to vary be-317

tween estuarine and coastal environments. Prior to running the model, historical318

Puget Sound observations were used to estimate these coe�cients and deter-319

mine if they substantially di�erent from the values found by Davis et al. (2014)320

for the Washington{Oregon shelf. Euphotic-zone depths from three years of321

monthly transmissometer pro�les (Newton and Van Voorhis, 2002) agreed well322

with Secchi Disk depths, which makes euphotic-zone depths a good source to es-323

timate light �elds. A linear regression of light attenuation (back-calculated from324

euphotic depth) and chlorophyll, omitting winter samples, showed high correla-325

tion ( R2 = 0.7) in the Newton and Van Voorhis (2002) dataset. However, light326

attenuation is commonly expected to depend on constituents of freshwater as327

well, and so we used the full record of 19 years (1999 - 2017) DOE sampling at328

PSB003, which provides coordinated observations of beam attenuation, chloro-329

phyll, salinity, and turbidity. An empirical relationship from Shannon (1975)330

was used to convert beam attenuation to light attenuation. Turbidity and salin-331

ity are highly correlated in the PSB003 dataset, and a linear regression for light332

attenuation as a function of chlorophyll and salinity (as in Eq. (1)) showed high333

correlation (R2 = 0.64) and tight bounds on coe�cients.334

The estimate of light attenuation by chlorophyll from this linear model335

(0.023) was consistent with that derived from the Newton and Van Voorhis336

(2002) three-year dataset described previously (0.026). However, a regression337

to the PSB003 data omitting salinity explained almost as much variance as the338

model with salinity. This suggests that salinity or freshwater fraction is not an339

e�ective proxy for light attenuation by river-derived material in Puget Sound,340

possibly because freshwater in Puget Sound originates in such a diversity of341

watersheds (Cuo et al., 2009; Banas et al., 2014). Thus in PS-1D, att fw is342

set to 0, not to imply that river inputs do not cause light attenuation, but to343

indicate that we lack a useful predictor of this e�ect. Instead, the mean ef-344

fect of watershed-derived turbidity and dissolved organic matter is captured in345

the background light attenuation att bg, which is far higher than attenuation by346

undiluted seawater in the Davis et al. (2014) model currently used in LiveOcean347

(Table 3).348

2.3.2 Phytoplankton dynamics349

The biogeochemical model in PS-1D is a six-compartment nitrogen budget, ni-350

trate (NO 3), ammonium (NH4), phytoplankton biomass (P), microzooplankton351
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biomass (Z), and small and large detritus (SD, LD). All six stocks are measured352

in mmol nitrogen m � 3 = � M N; we assume a chlorophyll:nitrogen ratio of 2.5353

(mg chl) (mmol N) � 1 to compare the model with observations. Apart from354

dividing the dissolved inorganic nutrient pool into NO 3 and NH4 fractions (to355

match available observations), the model structure and functional forms closely356

follow Davis et al. (2014), who provide a thorough description, rationale, and357

validation against nutrient, biomass, and growth- and grazing-rate data from358

the outer coast. Only the phytoplankton component is described below.359

Phytoplankton growth rate � at a given depth and time, as function of PAR
E and nutrients, is given by

� (E; NO 3; NH 4) = � 0

�
N tot

kmin + 2
p

kmin N tot + N tot

�  
�E

p
� 2E 2 + � 2

0

!

(2)

where the e�ective total nutrient concentration N tot is given by

N tot = NO3 + ' NH4 NH 4 (3)

The uptake preference' NH4 = 2 to take into account that NH 4 is taken up faster360

than NO3. The �rst bracketed quantity is a nutrient-limitation factor, similar361

to a Michaelis-Menten (Holling type II) saturating response, but incorporat-362

ing the \optimal uptake" model of Smith et al. (2009). The second bracketed363

quantity is a light-limitation factor, written in terms of the initial slope of the364

photosynthesis-irradiance curve � . E depends on depth and phytoplankton365

concentration P according to Eq. (1).366

As in the original Davis et al. (2014) model, there is no explicit dependence367

on temperature; � 0 and other vital rates in the model are de�ned at typical368

ambient temperatures, and we assume the temperature-driven change in these369

rates during one simulation is small compared with other modes of variation and370

uncertainty (e.g. changes in species composition, or error in the nutrient or light-371

limitation formulations). However, in the sensitivity analysis below, we quantify372

the likely e�ect of temperature by adjusting � 0, along with maximum grazing373

rate and remineralization rate, by a factor Q10
� T=10� C for a mean temperature374

shift of � T . We assumeQ10 = 2, a common rule of thumb for temperature375

response in phytoplankton (Eppley, 1972;Bissinger et al., 2008).376

Each model simulation is two years, with the annual cycle repeated exactly,377

and the �rst year discarded as spinup. The model is initialised based on the time-378

average and depth-average of December observations, when the water column379

is close to homogeneous: initial NO3 concentration is 27.85 � M N, and the380

same value is imposed as a bottom boundary condition (at 200 m depth) over381

the course of the simulation, as a simple means of representing the continual382

resupply of nutrients via the estuarine circulation.383

2.3.3 Parameter optimisation384

Apart from the light attenuation parameters, which were de�ned from historical385

data as described above, and parameters that are essentially structural choices386
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or assumed to be universal, there are 11 parameters in the biogeochemical model387

that might plausibly di�er between the Puget Sound and outer-coast ecosystems,388

and thus require a systematic investigation before settling on an adaptation of389

the Davis et al. (2014) model for use in PS-1D.390

The 11 unknown parameters were tuned using \particle swarm optimisa-391

tion" (PSO, Poli et al. (2007)). In PSO a number of imagined entities|the392

\particles"|are placed in a search space that consists of a summary measure of393

goodness-of-�t, the \cost," as a function of the parameters being tuned. Each394

particle then determines its movement through the search space by combin-395

ing aspects of the history of its own search (its current position and the best396

�t/lowest cost previously found) with the best �t found across the other mem-397

bers of the swarm, as well as random perturbations. Eventually the swarm as398

a whole, like a ock of birds collectively foraging for food, is likely to converge399

on the global optimum of the �tness function.400

The cost function was de�ned using the Willmot skill score

WSSMAE = 1 �
1
N

P i = N
i =1 jmi � oi j

1
N

P i = N
i =1 (jmi � �oj + joi � �oj)

(4)

where mi and oi are N matched pairs of model estimates and observations of401

chlorophyll (Chla), nitrate (NO 3) and ammonium (NH4).402

The PSO was run for 300 iterations until each of the 11 parameters con-403

verged, after which we ran a set of 11 experiments varying one parameter at a404

time, in order to determine whether model behaviour was sensitive to the di�er-405

ence between the PSO-derived value and the originalDavis et al. (2014) value406

(Fig. 13). Results allowed us to rank the PSO-derived parameters from greatest407

e�ect on model behaviour (initial growth-light slope ( � ), phytoplankton mortal-408

ity (m P ) to least (sinking rate of detritus, aggregation rate of phytoplankton).409

This indicates that there are indeed some, but fewer than 11, parameters in the410

LiveOcean biogeochemical model that need to be changed in order to correctly411

describe Main Basin. To make a �nal, practical decision regarding which pa-412

rameters to change, the PSO-derived parameter set was replaced by the original413

values one at a time, and the series of changes in WSS assessed: at the end,414

initial growth-light slope � , phytoplankton mortality mP , zooplankton grazing415

half-saturation K 0, maximum phytoplankton growth rate � 0, nitri�cation rate416

r nitr , and remineralization rate r remin were changed (Table 3).417

Model outputs using the �nal tuned parameters showed good agreement418

with the observed seasonal cycle of euphotic-zone-integrated NO3 (Fig. 14).419

The model captures phytoplankton bloom timing accurately, as well as mean420

spring{summer concentrations, but does not show transient peaks as high as421

some seen intermittently in spring and summer data. The model's winter and422

summer ammonium concentrations are consistent with observations.423

2.4 Integration of models and observations424

The PS-1D model just described is our principal means of quantifying the sensi-425

tivity of various measures of phytoplankton production to environmental factors,426
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Figure 13: Results from varying one parameter at a time around the set of
optimised parameters. The original Davis et al. (2014) parameter values (blue
lines) and PSO-derived values (red lines) are indicated. Left y{axis shows model
behaviour of chlorophyll (Chla, green squares), nitrate (NO3, red triangles), and
ammonium (NH4, orange circles), and right y{axis is for model as a whole (black
circles). X{axes are ranges of parameters in which they are varied.

Parameter Description Unit Davis et al. PS-1D
att bg Light attenuation by water column m � 1 0.05 0.15
att fw Light attenuation by fresh water m � 1 -0.0065 0
att P Light attenuation by phytoplankton m � 1 � M N � 1 0.03 0.026
� 0 Maximum phytoplankton growth rate d � 1 1.7 4

kmin Minimum half-saturation for NO 3 � M N 0.1 0.1
� Initial growth-light slope (W m � 2) � 1 d� 1 0.07 0.027

' NH 4 Preference for NH4 2 2
mP Phytoplankton mortality d � 1 0.1 0.163

magg Phytoplankton loss via aggregation (� M N) � 1 d� 1 0.05 0.05
I0 Zooplankton maximum ingestion rate 4.8 4.8
K0 Zooplankton grazing half-saturation � M N 3 5.3
� Microzooplankton growth e�ciency 0.3 0.3

mMZ Microzooplankton mortality d � 1 2 2
fex Fraction of grazing excreted to NH4 0.5 0.5

rremin Detrital remineralisation rate d � 1 0.1 0.25
wsSD small detritus sinking rate m d� 1 8 8
wsLD large detritus sinking rate m d� 1 80 80
rnitr Nitri�cation rate 0.1 0.035

Table 3: Final PS-1D tuned parameters for Main Basin, compared withDavis
et al. (2014) values for the outer coast.� MN = mmol nitrogen m � 3.
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Figure 14: Final PS-1D model outputs (blue line) against observations (gray
solid points) of chlorophyll (Chla), nitrate (NO 3), and ammonium (NH4). Chla,
NO3, and NH4 were calculated as average integratal over euphotic depth

including turbulent mixing, while the SOG model provides a point of compar-427

ison for several of these estimates. We use �ve phytoplankton metrics (i{iv in428

Sec. 1, with iii ) subdivided):429

1. Total annual primary production PPtot , converted to units of g C m� 2
430

yr � 1 assuming a C:N ratio of 106:16 mol:mol;431

2. Date of the spring bloom tbloom , de�ned as the day of year when cu-432

mulative, vertically-integrated phytoplankton biomass reached 15% of its433

annual total;434

3. Phytoplankton concentration during the seasonal period and depth layer435

associated with steelhead outmigration (P steelhead
outmigr ), mid April{�rst week436

of June (yeardays 109{159), and 0{2 m depth;437

4. Phytoplankton concentration during chinook outmigration in summer P chinook
outmigr ,438

�rst week of June{mid September (yeardays 159{258), 0{15 m depth;439

5. Incidence of strong nutrient stress in summer � tnut , de�ned as the count440

of days on which surface nutrient concentration is less than 3 mmol m� 3.441

The LiveOcean model, along with historical observations, provides the means
of determining the relationships between turbulent mixing and riverow, wind
stress, strati�cation. Mixing intensity, riverow, strati�cation, and wind stress
magnitude were all log-transformed, so that power-law relationships among
them can be described by constant sensitivities: if a driverD and response
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R are related by R = aDb, then a and b can be estimated by a linear regression
between logD and logR, and the sensitivity of R to D is given by

@(log R)
@(log D)

� b (5)

As described above, a combination of observations and model hindcasts/projections
allows us to quantify variability in the atmospheric, oceanic, and watershed
drivers themselves. Relating these scales of variability in drivers to the associ-
ated variability in phytoplankton metrics is a matter of multiplication and the
chain rule: for example, the variability in spring bloom date tbloom associated
with interannual variability in spring wind stress � , via the e�ect of wind stress
on turbulent mixing ( E ! K ! L , Fig. 1), is given by

� tbloom = �(log 10 � ) �
@(log10 � v )
@(log10 � )

�
@tbloom

@(log10 � v )
(6)

In general, each arrow in Fig. 1 represents one sensitivity, or partial derivative442

like the two that appear in 6, although the distinction in Fig. 1 between mecha-443

nisms that a�ect light limitation and mechanisms that a�ect nutrient limitation444

is a matter of interpretation rather than an explicit calculation. This analysis445

is a scaling exercise, and we endeavour not to overinterpret di�erences that are446

smaller than a factor of three.447

The primary timescale of analysis is interannual variation in seasonal aver-448

ages, i.e. the variance of Apr{Jun (spring) or Jul{Sep (summer) averages across449

a number of years. (Scales of variation denoted by � are de�ned through-450

out as 2 standard deviations.) In some cases, we have no means of calculat-451

ing interannual variation in this way: for example, variation in the exchange452

ow (and hence vertical advection, under our assumptions) has been calcu-453

lated across one annual cycle in LiveOcean (MacCready et al., in prep) but454

never across a useful ensemble of years. In these cases, we interpret the known455

event-scale (10 d) variation as a high upper bound on the unknown interan-456

nual variation. In other cases, it is not clear whether seasonal averages are457

indeed the timescale on which the environment drives variation in phytoplank-458

ton dynamics. For example, across three years of data from a high-time-459

resolution pro�ling buoy in Carr Inlet in South Puget Sound (ORCA, 2011{460

2013, https://nwem.apl.washington.edu/about proj ORCA.shtml ), it is possible461

to identify three events in which a transient peak in strati�cation is followed462

by a transient phytoplankton bloom (arrows, Fig. 15); whereas correlations be-463

tween strati�cation and chlorophyll on the monthly scale and longer are weak464

to nonexistent. Thus we calculated and report event-scale (10 d) variation for465

select quantities as an aid to interpretation and source of follow-on hypotheses.466
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Figure 15: Bottom{surface density di�erence (\drho," , in sigmat units) and
chlorophyll (vertically integrated, mg m 2) at the Carr Inlet ORCA buoy, for 2011
(blue), 2012 (green), and 2013 (red). Each point represents one day. The shaded
time period in the left panels is expanded in the right panels. Three event-scale
phytoplankton blooms associated with event-scale peaks in strati�cation are
marked with arrows.
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